Published in

American Chemical Society, Langmuir, 3(26), p. 2130-2135, 2009

DOI: 10.1021/la902676p

Links

Tools

Export citation

Search in Google Scholar

Enhanced electrochemiluminescence and charge transport through films of metallopolymer-gold nanoparticle composites

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

peer-reviewed ; Water-soluble 4-(dimethylamino) pyridine (DMAP) stabilized gold nanoparticles (DMAP-AuNP) were synthesized by ligand exchange and phase transfer (toluene/water). The DMAP-AuNPs are positively charged with the core diameter of 4 +/- 1 nm. Metallopolymer-gold nanocomposites were prepared by mixing gold nanoparticles and [Ru(bpy)(2)PVP(10)](ClO(4))(2), in water at different mole ratios: bpy is 2,2'-bipyridyl and PVP is poly (4-vinylpyridine). The photoluminescence emission intensity of the metallopolymer decreases with increasing AuNP loading and approximately 57% of the emission intensity is quenched when the Au NP:Ru mole ratio is 14.8 x 10(-2). The rate or homogeneous charge transfer through thin layers of the nanocomposite deposited oil glassy carbon electrodes increases with increasing nanoparticle loading. The homogeneous charge transport diffusion coefficient, D(CT)., for the composite (AuNP:Ru mole ratio 13.2 x 10(-2)) is (2.8 +/- 0.8) X 10(-11) cm(-2) s(-1) and is approximately 3-fold higher than that found for the pure metallopolymer. Significantly, despite the ability of the metal nanoparticles to quench the ruthenium-based emission, the electrochemiluminescence of the nanocomposite with a AuNP:Ru mole ratio of 4.95 x 10(-2) is approximately three times more intense than the parent metallopolymer. This enhancement arises from the increased rate of charge transport that leads to it greater number of excited states per unit time while minimizing lie quenching effects. The implications of these findings for the design of electrochemiluminescent sensors are discussed. ; PUBLISHED ; peer-reviewed