Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Macromolecules, 12(43), p. 5262-5268, 2010

DOI: 10.1021/ma100616f

Links

Tools

Export citation

Search in Google Scholar

Novel silafluorene-based conjugated polymers with pendant acceptor groups for high performance solar cells

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Two low-band-gap conjugated polymers, PSiFDCN and PSiFDTA, which consist of alternating silafluorene and triphenylamine backbone and different pendant acceptor groups (malononitrile and 1,3-diethyl-2-thiobarbituric acid) with styrylthiophene as π-bridge, were synthesized and characterized. By changing the acceptor groups in side chain, the energy levels, absorption spectra, and band gaps of the resulted polymers were effectively tuned. As the strength of the acceptors increases, the band gap reduces from 1.83 eV for PSiFDCN to 1.74 eV for PSiFDTA. Bulk heterojunction solar cells with these polymers as electron donor and (6,6)-phenyl-C71-butyric acid methyl ester (PC71BM) as electron acceptor exhibit high Voc (>0.85 V) and power conversion efficiency (PCE) of 2.50% and 3.15% for PSiFDCN and PSiFDTA, respectively.