A simple solution-based soft-contact printing process that could easily generate sub-100 nm nanopatterns having negligible thickness of residual layer was developed. In this process, the thickness of residual layer could be significantly decreased by controlling the concentration of nanoink or by utilizing nanoink having high curing point. Furthermore, the additional sonication process, introduced to the soft-printing process, could facilitate further decreasing the thickness of residual layer. Consequently, ZnO nanostructures having negligible residual layer were successfully fabricated, and Ag nanostructures having 63.1% average transmittance were demonstrated. We expect that our printing process can be utilized to fabricate semitransparent conductor for various optoelectronic devices by optimizing the dimensional parameters of nanopatterns.