Dissemin is shutting down on January 1st, 2025

Published in

Public Library of Science, PLoS ONE, 11(7), p. e49041, 2012

DOI: 10.1371/journal.pone.0049041

Links

Tools

Export citation

Search in Google Scholar

Cohesion Fatigue Explains Why Pharmacological Inhibition of the APC/C Induces a Spindle Checkpoint-Dependent Mitotic Arrest

Journal article published in 2012 by Pablo Lara-Gonzalez ORCID, Stephen S. Taylor
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The Spindle Assembly Checkpoint (SAC) delays the onset of anaphase in response to unattached kinetochores by inhibiting the activity of the Anaphase-Promoting Complex/Cyclosome (APC/C), an E3 ubiquitin ligase. Once all the chromosomes have bioriented, SAC signalling is somehow silenced, which allows progression through mitosis. Recent studies suggest that the APC/C itself participates in SAC silencing by targeting an unknown factor for proteolytic degradation. Key evidence in favour of this model comes from the use of proTAME, a small molecule inhibitor of the APC/C. In cells, proTAME causes a mitotic arrest that is SAC-dependent. Even though this observation comes at odds with the current view that the APC/C acts downstream of the SAC, it was nonetheless argued that these results revealed a role for APC/C activity in SAC silencing. However, we show here that the mitotic arrest induced by proTAME is due to the induction of cohesion fatigue, a phenotype that is caused by the loss of sister chromatid cohesion following a prolonged metaphase. Under these conditions, the SAC is re-activated and APC/C inhibition is maintained independently of proTAME. Therefore, these results provide a simpler explanation for why the proTAME-induced mitotic arrest is also dependent on the SAC. While these observations question the notion that the APC/C is required for SAC silencing, we nevertheless show that APC/C activity does partially contribute to its own release from inhibitory complexes, and importantly, this does not depend on proteasome-mediated degradation.