Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Annals of the New York Academy of Sciences, 1(1160), p. 294-299, 2009

DOI: 10.1111/j.1749-6632.2008.03823.x

Links

Tools

Export citation

Search in Google Scholar

Investigations into the inhibitory effects of relaxin on renal myofibroblast differentiation

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Derived from fibroblasts, myofibroblasts are the principal cells that are responsible for the synthesis and reorganization of excess matrix in renal interstitial fibrosis. Recognized from their de novo expression of alpha-smooth muscle actin, myofibroblast differentiation and activity can be influenced by several factors, including a combination of growth factors and other soluble mediators, extracellular matrix components, and mechanical stress. Relaxin has previously been shown to inhibit renal myofibroblast differentiation in vitro, an effect partly mediated through its ability to interfere with the transforming growth factor-beta1 (TGF-beta1) pathway via inhibition of Smad2 phosphorylation and translocation. Furthermore, endogenous relaxin has been shown to protect the kidney from a myofibroblast-mediated model of injury in vivo. However, the pathways involved in the interaction between relaxin and TGF-beta1 remain unknown. In this report, the inhibitory actions of relaxin on TGF-beta1-induced renal myofibroblast differentiation are summarized to date, and the potential signaling pathways that are implicated in relaxin's inhibitory actions are discussed.