Published in

Association for Research in Vision and Ophthalmology, Journal of Vision, 1(9), p. 1-1

DOI: 10.1167/9.1.1

Links

Tools

Export citation

Search in Google Scholar

Multivoxel fMRI analysis of color tuning in human primary visual cortex

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We use multivoxel pattern analysis (MVPA) to study the spatial clustering of color-selective neurons in the human brain. Our main objective was to investigate whether MVPA reveals the spatial arrangements of color-selective neurons in human primary visual cortex (V1). We measured the distributed fMRI activation patterns for different color stimuli (Experiment 1: cardinal colors (to which the LGN is known to be tuned), Experiment 2: perceptual hues) in V1. Our two main findings were that (i) cone-opponent cardinal color modulations produce highly reproducible patterns of activity in V1, but these were not unique to each color. This suggests that V1 neurons with tuning characteristics similar to those found in LGN are not spatially clustered. (ii) Unique activation patterns for perceptual hues in V1 support current evidence for a spatially clustered hue map. We believe that our work is the first to show evidence of spatial clustering of neurons with similar color preferences in human V1.