Published in

American Chemical Society, Biomacromolecules, 11(9), p. 2997-3003, 2008

DOI: 10.1021/bm8006693

Links

Tools

Export citation

Search in Google Scholar

Vesicles from Peptidic Side-Chain Polymers Synthesized by Atom Transfer Radical Polymerization

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Block copolymers can adopt a wide range of morphologies in dilute aqueous solution. There is a significant amount of interest in the use of block copolymer vesicles for a number of applications. We show that a series of oligo(valine) and oligo(phenylalanine) peptides coupled to a methacrylic group can be prepared by conventional peptide coupling techniques. These can be successfully polymerized by atom transfer radical polymerization (ATRP) in hexafluoroisopropanol (HFIP) giving access to poly(ethylene oxide)-b-poly(side-chain peptides). Many of these polymers self-assemble to form vesicles using an organic to aqueous solvent exchange. One example with a divaline hydrophobic block gives a mixture of toroids and vesicles. Circular dichroism demonstrates that secondary structuring is observed in the hydrophobic region of the vesicle walls for the valine side-chain containing polymers.