Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature Communications, 1(14), 2023

DOI: 10.1038/s41467-023-38423-7

Links

Tools

Export citation

Search in Google Scholar

A map of single-phase high-entropy alloys

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractHigh-entropy alloys have exhibited unusual materials properties. The stability of equimolar single-phase solid solution of five or more elements is supposedly rare and identifying the existence of such alloys has been challenging because of the vast chemical space of possible combinations. Herein, based on high-throughput density-functional theory calculations, we construct a chemical map of single-phase equimolar high-entropy alloys by investigating over 658,000 equimolar quinary alloys through a binary regular solid-solution model. We identify 30,201 potential single-phase equimolar alloys (5% of the possible combinations) forming mainly in body-centered cubic structures. We unveil the chemistries that are likely to form high-entropy alloys, and identify the complex interplay among mixing enthalpy, intermetallics formation, and melting point that drives the formation of these solid solutions. We demonstrate the power of our method by predicting the existence of two new high-entropy alloys, i.e. the body-centered cubic AlCoMnNiV and the face-centered cubic CoFeMnNiZn, which are successfully synthesized.