Dissemin is shutting down on January 1st, 2025

Published in

Springer Nature [academic journals on nature.com], Microsystems and Nanoengineering, 1(10), 2024

DOI: 10.1038/s41378-024-00760-y

Links

Tools

Export citation

Search in Google Scholar

Functionalized monodisperse microbubble production: microfluidic method for fast, controlled, and automated removal of excess coating material

Journal article published in 2024 by M. R. P. van den Broek ORCID, M. Versluis ORCID, A. van den Berg ORCID, T. Segers ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractFunctionalized monodisperse microbubbles have the potential to boost the sensitivity and efficacy of molecular ultrasound imaging and targeted drug delivery using bubbles and ultrasound. Monodisperse bubbles can be produced in a microfluidic flow focusing device. However, their functionalization and sequential use require removal of the excess lipids from the bubble suspension to minimize the use of expensive ligands and to avoid competitive binding and blocking of the receptor molecules. To date, excess lipid removal is performed by centrifugation, which is labor intensive and challenging to automate. More importantly, as we show, the increased hydrostatic pressure during centrifugation can reduce bubble monodispersity. Here, we introduce a novel automated microfluidic ’washing’ method. First, bubbles are injected in a microfluidic chamber 1 mm in height where they are left to float against the top wall. Second, lipid-free medium is pumped through the chamber to remove excess lipids while the bubbles remain located at the top wall. Third, the washed bubbles are resuspended and removed from the device into a collection vial. We demonstrate that the present method can (i) reduce the excess lipid concentration by 4 orders of magnitude, (ii) be fully automated, and (iii) be performed in minutes while the size distribution, functionality, and acoustic response of the bubbles remain unaffected. Thus, the presented method is a gateway to the fully automated production of functionalized monodisperse microbubbles.