Full text: Download
Secondary minerals in SNC meteorites from Mars exhibit O isotope ratios believed to be consistent with the non-thermal escape of O from the atmosphere. The primary source of the non-thermal O is the dissociative- recombination of O2+ in the ionosphere. I present here the results of a model that accounts for the probability of escape of non-thermal O isotopes due to collisions with overlying CO2, combined with a model for Rayleigh fractionation of the atmosphere remaining as a result of O escape. Previous analyses of MAVEN number density data have shown a strong variability with latitude and season of the heights of the homopause and exobase, with a mean homopause at 110 km and a mean difference of about 60 km. Rayleigh model results demonstrate a dependence on homopause height and on temperature profile and require a more accurate calculation of fractionation factors for the Rayleigh equation. Isothermal temperature profiles yield much smaller variation in 17O with homopause height. These results demonstrate the need for a careful assessment of O isotope enrichment due to non-thermal escape both for the modern atmosphere and for the evolution of the atmosphere over the age of the planet.