Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Journal of the American Ceramic Society, 8(107), p. 5285-5297, 2024

DOI: 10.1111/jace.19762

Links

Tools

Export citation

Search in Google Scholar

Mechanical and thermal properties for corrosion products of lutetium silicates against CMAS

Journal article published in 2024 by Fan Yang, Yun Fan, Juanli Zhao, Yuchen Liu, Kaili Chu, Yiran Li ORCID, Wenxian Li, Bin Liu ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractRare earth silicates are promising environmental/thermal barrier coating (E/TBC) materials facing severe CMAS (CaO‐MgO‐Al2O3‐SiO2) corrosion. Previous studies mainly focused on the intrinsic properties of precorrosion coatings, but there were few studies on their CMAS corrosion products that play a crucial role in the performance of coatings in postservice stage. In this work, the mechanical and thermal properties of nine corrosion products between lutetium silicates and CMAS are studied using first‐principles calculations. Their differences of elastic stiffness are attributed to the different crystal structures and bonding strength. The T:O ratio is identified as a factor of the crystal structure for silicate products, and it has a good correlation with their elastic stiffness. Moreover, the divergences of thermal conductivity are dominated by three essential factors, that is, atomic vibration intensity, lattice vibrational anharmonicity, and complexity of crystal structure. Compared with rare earth silicates, six products, that is, the α‐CaSiO3, β‐CaSiO3, Ca2MgSi2O7, Ca2Al2SiO7, CaAl2Si2O8, and Ca2Lu8(SiO4)6O2, showing good damage tolerance and low thermal conductivities, are predicted to be advantageous to E/TBCs. These discoveries reveal the mechanical/thermal properties of corrosion products between lutetium silicates and CMAS and are expected to support the future researches on the performance of E/TBC in the postservice stage.