Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Sensors, 20(24), p. 6619, 2024

DOI: 10.3390/s24206619

Links

Tools

Export citation

Search in Google Scholar

Enhanced Infant Movement Analysis Using Transformer-Based Fusion of Diverse Video Features for Neurodevelopmental Monitoring

Journal article published in 2024 by Alexander Turner ORCID, Don Sharkey ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Neurodevelopment is a highly intricate process, and early detection of abnormalities is critical for optimizing outcomes through timely intervention. Accurate and cost-effective diagnostic methods for neurological disorders, particularly in infants, remain a significant challenge due to the heterogeneity of data and the variability in neurodevelopmental conditions. This study recruited twelve parent–infant pairs, with infants aged 3 to 12 months. Approximately 25 min of 2D video footage was captured, documenting natural play interactions between the infants and toys. We developed a novel, open-source method to classify and analyse infant movement patterns using deep learning techniques, specifically employing a transformer-based fusion model that integrates multiple video features within a unified deep neural network. This approach significantly outperforms traditional methods reliant on individual video features, achieving an accuracy of over 90%. Furthermore, a sensitivity analysis revealed that the pose estimation contributed far less to the model’s output than the pre-trained transformer and convolutional neural network (CNN) components, providing key insights into the relative importance of different feature sets. By providing a more robust, accurate and low-cost analysis of movement patterns, our work aims to enhance the early detection and potential prediction of neurodevelopmental delays, whilst providing insight into the functioning of the transformer-based fusion models of diverse video features.