Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Methane, 2(2), p. 137-147, 2023

DOI: 10.3390/methane2020011

Links

Tools

Export citation

Search in Google Scholar

PdxNiy/TiO2 Electrocatalysts for Converting Methane to Methanol in An Electrolytic Polymeric Reactor—Fuel Cell Type (PER-FC)

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

PdxNiy/TiO2 bimetallic electrocatalysts were used in fuel cell polymeric electrolyte reactors (PER-FC) to convert methane into methanol through the partial oxidation of methane promoted by the activation of water at room temperature. X-ray diffraction measurements showed the presence of Pd and Ni phases and TiO2 anatase phase. TEM images revealed mean particle sizes larger than those reported for PdNi materials supported, indicating that TiO2 promotes particle aggregation on its surface. Information on the surface structure of electrocatalysts obtained by Raman spectra indicated the presence or formation of NiO. The PER-FC tests showed the highest power density for the electrocatalyst with the lowest amount of nickel Pd80Ni20/TiO2 (0.58 mW cm−2). The quantification of methanol through the eluents collected from the reactor showed higher concentrations of methanol produced, revealing that the use of TiO2 as a support also increased the reaction rate.