Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Angewandte Chemie International Edition, 33(62), 2023

DOI: 10.1002/anie.202305571

Links

Tools

Export citation

Search in Google Scholar

Design Principles for Maximizing Hole Utilization of Semiconductor Quantum Wires toward Efficient Photocatalysis

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractMaximizing hole‐transfer kinetics—usually a rate‐determining step in semiconductor‐based artificial photosynthesis—is pivotal for simultaneously enabling high‐efficiency solar hydrogen production and hole utilization. However, this remains elusive yet as efforts are largely focused on optimizing the electron‐involved half‐reactions only by empirically employing sacrificial electron donors (SEDs) to consume the wasted holes. Using high‐quality ZnSe quantum wires as models, we show that how hole‐transfer processes in different SEDs affect their photocatalytic performances. We found that larger driving forces of SEDs monotonically enhance hole‐transfer rates and photocatalytic performances by almost three orders of magnitude, a result conforming well with the Auger‐assisted hole‐transfer model in quantum‐confined systems. Intriguingly, further loading Pt cocatalyts can yield either an Auger‐assisted model or a Marcus inverted region for electron transfer, depending on the competing hole‐transfer kinetics in SEDs.