Dissemin is shutting down on January 1st, 2025

Published in

Digital Threats: Research and Practice, 2(5), p. 1-29, 2024

DOI: 10.1145/3633206

Links

Tools

Export citation

Search in Google Scholar

Unveiling the Threat: Investigating Distributed and Centralized Backdoor Attacks in Federated Graph Neural Networks

Journal article published in 2024 by Jing Xu ORCID, Stefanos Koffas ORCID, Stjepan Picek ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Graph neural networks (GNNs) have gained significant popularity as powerful deep learning methods for processing graph data. However, centralized GNNs face challenges in data-sensitive scenarios due to privacy concerns and regulatory restrictions. Federated learning has emerged as a promising technology that enables collaborative training of a shared global model while preserving privacy. Although federated learning has been applied to train GNNs, no research focuses on the robustness of Federated GNNs against backdoor attacks. This article bridges this research gap by investigating two types of backdoor attacks in Federated GNNs: centralized backdoor attack (CBA) and distributed backdoor attack (DBA). Through extensive experiments, we demonstrate that DBA exhibits a higher success rate than CBA across various scenarios. To further explore the characteristics of these backdoor attacks in Federated GNNs, we evaluate their performance under different scenarios, including varying numbers of clients, trigger sizes, poisoning intensities, and trigger densities. Additionally, we explore the resilience of DBA and CBA against two defense mechanisms. Our findings reveal that both defenses cannot eliminate DBA and CBA without affecting the original task. This highlights the necessity of developing tailored defenses to mitigate the novel threat of backdoor attacks in Federated GNNs.