Dissemin is shutting down on January 1st, 2025

Published in

American Astronomical Society, Astrophysical Journal Supplement, 2(272), p. 31, 2024

DOI: 10.3847/1538-4365/ad43d5

Links

Tools

Export citation

Search in Google Scholar

Stellar Atmospheric Parameters of ∼11,000 RR Lyrae Stars from LAMOST Spectra

Journal article published in 2024 by Jiangtao Wang ORCID, Jianrong Shi ORCID, Jianning Fu ORCID, Weikai Zong ORCID, Chunqian Li ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Accurate determination of the stellar atmospheric parameters of RR Lyrae stars (RRLs) requires short individual exposures of the spectra to mitigate pulsation effects. We present improved template-matching methods to determine the stellar atmospheric parameters of RRLs from single-epoch spectra of the Large Sky Area Multi-Object Fiber Spectroscopic Telescope, also known as the Guoshoujing Telescope (LAMOST). We determine the radial velocities and stellar atmospheric parameters (effective temperature T eff, surface gravity log g , and metallicity [M/H]) of 10,486 and 1027 RRLs from 42,729 LAMOST low-resolution spectra (LRS) and 7064 LAMOST medium-resolution spectra (MRS), respectively. Our results are in good agreement with the parameters of other databases, where the external uncertainties of T eff, log g , and [M/H] for LRS/MRS are estimated to be 207/142 K, 0.21/0.16 dex, and 0.24/0.18 dex, respectively. We conclude with the variation characteristics of the radial velocities (RV) and stellar atmospheric parameters for RRLs during the pulsation phase. There is a significant difference of 28 ± 21 km s−1 between the peak-to-peak amplitude (A ptp) of RV from the Hα line (RV) and from metal lines (RVmetal) for RRab, whereas it is only 4 ± 17 km s−1 for RRc. The A ptp of T eff is 930 ± 456 and 409 ± 375 K for RRab and RRc, respectively. The log g of RRab shows a mild variation of approximately 0.22 ± 0.42 dex near the phase of φ = 0.9, while that of RRc almost remains constant. The [M/H] of RRab and RRc show a minor variation of about 0.25 ± 0.50 and 0.28 ± 0.55 dex, respectively, near the phase of φ = 0.9. We expect that the determined stellar atmospheric parameters would shed new light on the study of stellar evolution and pulsation, the structure of the Milky Way, as well as other research fields.