Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Solar RRL, 16(8), 2024

DOI: 10.1002/solr.202400376

Links

Tools

Export citation

Search in Google Scholar

Impact of Perovskite Subcell Breakdown on the Performance of Perovskite/Perovskite/Silicon Triple‐Junction Solar Cells

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Perovskite‐based triple‐junction solar cells have recently gained significant attention and are rapidly developing, thanks to the insights gained from the advancement in its dual‐junction counterparts. However, employing perovskite materials in multijunction solar cells with more than two junctions brings new challenges that have not yet been addressed. One aspect is the possibility of reverse bias breakdown of perovskite subcells during operation of the triple–junction device. This is more relevant for triple‐junction solar cells because a higher reverse voltage might drop at perovskite subcells compared to the case of dual‐junction solar cells. Herein, the breakdown voltages of the two perovskite subcells in perovskite/perovskite/silicon triple‐junction solar cells are determined by progressively increasing the reverse bias applied to the subcells in a single‐junction architecture during current–voltage measurements and monitoring the appearance of shunts using illuminated lock‐in thermography measurements. Furthermore, to analyze the effect on the final triple–junction solar cell, the triple‐junction device is brought in different current limitation conditions. It is shown that the subcell breakdown can happen during the operation of the triple‐junction solar cell, especially for the case where the perovskite top cell is limiting the overall current of the device. This effect is less severe when the middle perovskite cell limits the current due to the absence of a direct contact with the silver metallization which has shown to be the major degradation site during reverse biasing of perovskite solar cells. Finally, there is no concern regarding breakdown of the silicon bottom cell due to the higher breakdown voltage of silicon compared to perovskite.