Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Crystals, 10(13), p. 1410, 2023

DOI: 10.3390/cryst13101410

Links

Tools

Export citation

Search in Google Scholar

Hirshfeld Surface Analysis and Density Functional Theory Calculations of 2-Benzyloxy-1,2,4-triazolo[1,5-a] quinazolin-5(4H)-one: A Comprehensive Study on Crystal Structure, Intermolecular Interactions, and Electronic Properties

Journal article published in 2023 by Ahmed H. Bakheit ORCID, Hatem A. Abuelizz ORCID, Rashad Al-Salahi ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

This study employs a comprehensive computational analysis of the 2-benzyloxy-1,2,4-triazolo[1,5-a] quinazolin-5(4H)-one (ID code: CCDC 834498) to explore its intermolecular interactions, surface characteristics, and crystal structure. Utilizing the Hirshfeld surface technique and Crystal Explorer 17.5, the study maps the Hirshfeld surfaces for a detailed understanding of atom pair close contacts and interaction types. The study also investigates the compound’s electronic and optical characteristics using Frontier Molecular Orbital (FMO) analysis and Global Reactivity Parameters (GRPs). The compound is identified as electron-rich with strong electron-donating and accepting potential, indicating its reactivity and stability. Its band gap suggests Nonlinear Optical (NLO) attributes. The Molecular Electrostatic Potential (MEP) map reveals charge distribution across the compound’s surface. The computational methods’ reliability is validated by the low Mean Absolute Error (MAE) and Mean Squared Error (MSE) in the comparison of experimental and theoretical bond lengths and angles.