Association for Computing Machinery (ACM), ACM Computing Surveys, 4(56), p. 1-37, 2023
DOI: 10.1145/3625544
Full text: Unavailable
This survey examines approaches to promote Collaborative Learning in distributed systems for emergent Intelligent Autonomous Systems (IAS). The study involves a literature review of Intelligent Autonomous Systems based on Collaborative Learning, analyzing aspects in four dimensions: computing environment, performance concerns, system management, and privacy concerns, mapping the significant requirements of systems to the emerging Artificial intelligence models. Furthermore, the article explores Collaborative Learning Taxonomy for IAS to demonstrate the correlation between IoT, Big Data, and Human-in-the-Loop. Several technological open issues exist in the aforementioned domains (such as in applications of autonomous driving, robotics in healthcare, cyber security, and others) to effectively achieve the future deployment of Intelligent Autonomous Systems. This Survey aims to organize concepts around IAS, indicating the approaches used to extract knowledge from data in Collaborative Learning for IAS, and identifying open issues. Moreover, it presents a guide to overcoming the existing challenges in decision-making mechanisms with IAS, providing a holistic vision of Big Data and Human-in-the-Loop.