Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Advanced Functional Materials, 51(33), 2023

DOI: 10.1002/adfm.202307954

Links

Tools

Export citation

Search in Google Scholar

Configurational and Dynamical Heterogeneity in Superionic Li<sub>5.3</sub>PS<sub>4.3</sub>Cl<sub>1.7−</sub><sub>x</sub>Br<sub>x</sub>

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThe correlation between lattice chemistry and cation migration in high‐entropy Li+ conductors is not fully understood due to challenges in characterizing anion disorder. To address this issue, argyrodite family of Li+ conductors, which enables structural engineering of the anion lattice, is investigated. Specifically, new argyrodites, Li5.3PS4.3Cl1.7−xBrx (0 ≤ x ≤ 1.7), with varying anion entropy are synthesized and X‐ray diffraction, neutron scattering, and multinuclear high‐resolution solid‐state nuclear magnetic resonance (NMR) are used to determine the resulting structures. Ion and lattice dynamics are determined using variable‐temperature multinuclear NMR relaxometry and maximum entropy method analysis of neutron scattering, aided by constrained ab initio molecular dynamics calculations. 15 atomic configurations of anion arrangements are identified, producing a wide range of local lattice dynamics. High entropy in the lattice structure, composition, and dynamics stabilize otherwise metastable Li‐deficient structures and flatten the energy landscape for cation migration. This resulted in the highest room‐temperature ionic conductivity of 26 mS cm−1 and a low activation energy of 0.155 eV realized in Li5.3PS4.3Cl0.7Br, where anion disorder is maximized. This study sheds light on the complex structure–property relationships of high‐entropy superionic conductors, highlighting the significance of heterogeneity in lattice dynamics.