Dissemin is shutting down on January 1st, 2025

Published in

Wiley, ChemSusChem, 15(17), 2023

DOI: 10.1002/cssc.202301200

Links

Tools

Export citation

Search in Google Scholar

Batch and Flow Green Microwave‐Assisted Catalytic Conversion Of Levulinic Acid to Pyrrolidones

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThis paper reports a new sustainable protocol for the microwave‐assisted catalytic conversion of levulinic acid into N‐substituted pyrrolidones over tailor‐made mono (Pd, Au) or bimetallic (PdAu) catalysts supported on either highly mesoporous silica (HMS) or titania‐doped HMS, exploiting the advantages of dielectric heating. MW‐assisted reductive aminations of levulinic acid with several amines were first optimized in batch mode under hydrogen pressure (5 bar) in solvent‐free conditions. Good‐to‐excellent yields were recorded at 150 °C in 90 min over the PdTiHMS and PdAuTiHMS, that proved recyclable and almost completely stable after six reaction cycles. Aiming to scale‐up this protocol, a MW‐assisted flow reactor was used in combination with different green solvents. Cyclopentyl methyl ether (CPME) provided a 99 % yield of N‐(4‐methoxyphenyl) pyrrolidin‐2‐one at 150 °C over PdTiHMS. The described MW‐assisted flow synthesis proves to be a safe procedure suitable for further industrial applications, while averting the use of toxic organic solvents.