Published in

American Chemical Society, ACS Applied Materials and Interfaces, 8(2), p. 2193-2197, 2010

DOI: 10.1021/am100512c

Links

Tools

Export citation

Search in Google Scholar

Microfabrication of carbon structures by pattern miniaturization in resorcinol-formaldehyde gel

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A simple and novel method to fabricate and miniaturize surface and subsurface microstructures and micropatterns in glassy carbon is proposed and demonstrated. An aqueous resorcinol-formaldehyde (RF) sol is employed for micromolding of the master pattern to be replicated, followed by controlled drying and pyrolysis of the gel to reproduce an isotropically shrunk replica in carbon. The miniaturized version of the master pattern thus replicated in carbon is about 1 order of magnitude smaller than original master by repeating three times the above cycle of molding and drying. The microfabrication method proposed will greatly enhance the toolbox for a facile fabrication of a variety of carbon-MEMS and C-microfluidic devices.