Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, Cardiovascular Research, 2(120), p. 140-151, 2023

DOI: 10.1093/cvr/cvad159

Links

Tools

Export citation

Search in Google Scholar

Canonical Wnt pathway and the LDL receptor superfamily in neuronal cholesterol homeostasis and function

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Aims There is little information on the regulation of cholesterol homeostasis in the brain. Whether cholesterol crosses the blood–brain barrier is under investigation, but the present understanding is that cholesterol metabolism in the brain is independent from that in peripheral tissues. Lipoprotein receptors from the LDL receptor family (LRPs) have key roles in lipid particle accumulation in cells involved in vascular and cardiac pathophysiology; however, their function on neural cells is unknown. Methods and results The expression of LRP5 and the components and targets of its downstream signalling pathway, the canonical Wnt pathway, including β-catenin, LEF1, VEGF, OPN, MMP7, and ADAM10, is analysed in the brains of Wt and Lrp5−/− mice and in a neuroblastoma cell line. LRP5 expression is increased in a time- and dose-dependent manner after lipid loading in neuronal cells; however, it does not participate in cholesterol homeostasis as shown by intracellular lipid accumulation analyses. Neurons challenged with staurosporin and H2O2 display an anti-apoptotic protective role for LRP5. Conclusions For the first time, it has been shown that neurons can accumulate intracellular lipids and lipid uptake is performed mainly by the LDLR, while CD36, LRP1, and LRP5 do not play a major role. In addition, it has been shown that LRP5 triggers the canonical Wnt pathway in neuronal cells to generate pro-survival signals. Finally, Lrp5−/− mice have maintained expression of LRP5 only in the brain supporting the biological plausible concept of the need of brain LRP5 to elicit pro-survival processes and embryonic viability.