Dissemin is shutting down on January 1st, 2025

Published in

American Association for Cancer Research, Cancer Immunology Research, 2024

DOI: 10.1158/2326-6066.cir-24-0230

Links

Tools

Export citation

Search in Google Scholar

The CCR6–CCL20 axis promotes regulatory T cell glycolysis and immunosuppression in tumors

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Regulatory T cells (Tregs) are important players in the tumor microenvironment. However, the mechanisms behind their immunosuppressive effects are poorly understood. We found that CCR6–CCL20 activity in tumor-infiltrating Tregs is associated with greater glycolytic activity and ablation of Ccr6 reduced glycolysis and lactic acid production while increasing compensatory glutamine metabolism. Immunosuppressive activity towards CD8+ T cells was abrogated in Ccr6-/- Tregs due to reduction in activation-induced glycolysis. Furthermore, Ccr6-/- mice exhibited improved survival across multiple tumor models compared to wildtype mice, and Treg and CD8+ T-cell depletion abrogated the improvement. In addition, Ccr6 ablation further promoted the efficacy of anti-PD-1 therapy in a preclinical glioma model. Follow-up knockdown of Ccl20 with siRNA also demonstrated improvement in antitumor efficacy. Our results unveil CCR6 as a marker and regulator of Treg-induced immunosuppression and identify approaches to target the metabolic determinants of Treg immunosuppressive activity.