Dissemin is shutting down on January 1st, 2025

Published in

American Geophysical Union, Geophysical Research Letters, 4(51), 2024

DOI: 10.1029/2023gl106808

Links

Tools

Export citation

Search in Google Scholar

Assessment of Dust Size Retrievals Based on AERONET: A Case Study of Radiative Closure From Visible‐Near‐Infrared to Thermal Infrared

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

AbstractSuper‐coarse dust particles (diameters >10 μm) are evidenced to be more abundant in the atmosphere than model estimates and contribute significantly to the dust climate impacts. Since super‐coarse dust accounts for less dust extinction in the visible‐to‐near‐infrared (VIS‐NIR) than in the thermal infrared (TIR) spectral regime, they are suspected to be underestimated by remote sensing instruments operates only in VIS‐NIR, including Aerosol Robotic Networks (AERONET), a widely used data set for dust model validation. In this study, we perform a radiative closure assessment using the AERONET‐retrieved size distribution in comparison with the collocated Atmospheric Infrared Sounder (AIRS) TIR observations with comprehensive uncertainty analysis. The consistently warm bias in the comparisons suggests a potential underestimation of super‐coarse dust in the AERONET retrievals due to the limited VIS‐NIR sensitivity. An extra super‐coarse mode included in the AERONET‐retrieved size distribution helps improve the TIR closure without deteriorating the retrieval accuracy in the VIS‐NIR.