Dissemin is shutting down on January 1st, 2025

Published in

IOP Publishing, Journal of Physics: Conference Series, 6(2687), p. 062024, 2024

DOI: 10.1088/1742-6596/2687/6/062024

Links

Tools

Export citation

Search in Google Scholar

Beam dynamics optimization of EuPRAXIA@SPARC_LAB RF injector

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract At EuPRAXIA@SPARC_LAB an X-ray FEL user facility is driven by a plasma accelerator in the particle-driven configuration where an ultra-relativistic beam, the driver, through a plasma generates a wake of charge density useful for accelerating a witness beam. The electron bunches are generated through the so-called comb technique in an RF injector that consists of a 1.6-cell S-band gun followed by four S-band TW accelerating structures. The main working point foresees a 30pC witness and a 200pC driver longitudinally compressed in the first accelerating structure operated in the velocity-bunching regime, which allows to accelerate and manipulate the beam to reach proper transverse and longitudinal parameters. The optimization of the witness emittance is performed with additional magnetic field around the gun and the velocity bunching S-band structures and by shaping the laser pulse at the cathode. The paper reports on beam dynamics studies performed also with the insertion of an X-band RF cavity after the gun that is proposed to shape the beam current distribution and stabilize it with respect to RF jitters.