Dissemin is shutting down on January 1st, 2025

Published in

IOP Publishing, Journal of Physics: Conference Series, 6(2687), p. 062023, 2024

DOI: 10.1088/1742-6596/2687/6/062023

Links

Tools

Export citation

Search in Google Scholar

Beam dynamics optimization for high gradient beam driven plasma wakefield acceleration at SPARC-LAB

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract The SPARC_LAB test facility at the LNF (Laboratori Nazionali di Frascati, Rome) holds a high brightness photo-injector used to investigate advanced beam manipulation techniques. High brightness electron bunch trains (so-called comb beams) can be generated striking on the photo-cathode of a Radio Frequency (RF) photo-injector with a ultra-short UV laser pulse train in tandem with the velocity bunching technique. Beam dynamics studies have been performed with the aim of optimizing the dynamics of the double beam (driver and witness) used to perform particle driven plasma wake field acceleration (PWFA). In this scenario different scans on beam parameters were carried on adopting the ASTRA simulation code, in order to optimize the witness beam quality and improve the plasma booster stage performances. A benchmark of the simulations has been then performed, reproducing the experimental data obtained from the optimization of machine performances, and a good agreement was found.