Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Diagnostics, 11(14), p. 1075, 2024

DOI: 10.3390/diagnostics14111075

Links

Tools

Export citation

Search in Google Scholar

Improved Positron Emission Tomography Quantification: Evaluation of a Maximum-Likelihood Scatter Scaling Algorithm

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Incorrect scatter scaling of positron emission tomography (PET) images can lead to halo artifacts, quantitative bias, or reconstruction failure. Tail-fitted scatter scaling (TFSS) possesses performance limitations in multiple cases. This study aims to investigate a novel method for scatter scaling: maximum-likelihood scatter scaling (MLSS) in scenarios where TFSS tends to induce artifacts or are observed to cause reconstruction abortion. [68Ga]Ga-RGD PET scans of nine patients were included in cohort 1 in the scope of investigating the reduction of halo artifacts relative to the scatter estimation method. PET scans of 30 patients administrated with [68Ga]Ga-uPAR were included in cohort 2, used for an evaluation of the robustness of MLSS in cases where TFSS-integrated reconstructions are observed to fail. A visual inspection of MLSS-corrected images scored higher than TFSS-corrected reconstructions of cohort 1. The quantitative investigation near the bladder showed a relative difference in tracer uptake of up to 94.7%. A reconstruction of scans included in cohort 2 resulted in failure in 23 cases when TFSS was used. The lesion uptake values of cohort 2 showed no significant difference. MLSS is suggested as an alternative scatter-scaling method relative to TFSS with the aim of reducing halo artifacts and a robust reconstruction process.