Dissemin is shutting down on January 1st, 2025

Published in

American Society of Clinical Oncology, JCO Clinical Cancer Informatics, 8, 2024

DOI: 10.1200/cci.23.00192

Links

Tools

Export citation

Search in Google Scholar

Deep Learning-Based Dynamic Risk Prediction of Venous Thromboembolism for Patients With Ovarian Cancer in Real-World Settings From Electronic Health Records

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

PURPOSE Patients with epithelial ovarian cancer (EOC) have an elevated risk for venous thromboembolism (VTE). To assess the risk of VTE, models were developed by statistical or machine learning algorithms. However, few models have accommodated deep learning (DL) algorithms in realistic clinical settings. We aimed to develop a predictive DL model, exploiting rich information from electronic health records (EHRs), including dynamic clinical features and the presence of competing risks. METHODS We extracted EHRs of 1,268 patients diagnosed with EOC from January 2007 through December 2017 at the National Cancer Center, Korea. DL survival networks using fully connected layers, temporal attention, and recurrent neural networks were adopted and compared with multi-perceptron–based classification models. Prediction accuracy was independently validated in the data set of 423 patients newly diagnosed with EOC from January 2018 to December 2019. Personalized risk plots displaying the individual interval risk were developed. RESULTS DL-based survival networks achieved a superior area under the receiver operating characteristic curve (AUROC) between 0.95 and 0.98 while the AUROC of classification models was between 0.85 and 0.90. As clinical information benefits the prediction accuracy, the proposed dynamic survival network outperformed other survival networks for the test and validation data set with the highest time-dependent concordance index (0.974, 0.975) and lowest Brier score (0.051, 0.049) at 6 months after a cancer diagnosis. Our visualization showed that the interval risk fluctuating along with the changes in longitudinal clinical features. CONCLUSION Adaption of dynamic patient clinical features and accounting for competing risks from EHRs into the DL algorithms demonstrated VTE risk prediction with high accuracy. Our results show that this novel dynamic survival network can provide personalized risk prediction with the potential to assist risk-based clinical intervention to prevent VTE among patients with EOC.