Published in

Nature Research, Nature Nanotechnology, 12(2), p. 790-795, 2007

DOI: 10.1038/nnano.2007.380

Links

Tools

Export citation

Search in Google Scholar

Layer-by-layer assembled charge-trap memory devices with adjustable electronic properties

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We describe a versatile approach for preparing flash memory devices composed of polyelectrolyte/gold nanoparticle multilayer films. Anionic gold nanoparticles were used as the charge storage elements, and poly(allylamine)/poly(styrenesulfonate) multilayers deposited onto hafnium oxide (HfO2)-coated silicon substrates formed the insulating layers. The top contact was formed by depositing HfO2 and platinum. In this study, we investigated the effect of increasing the number of polyelectrolyte and gold nanoparticle layers on memory performance, including the size of the memory window (the critical voltage difference between the `programmed' and `erased' states of the devices) and programming speed. We observed a maximum memory window of about 1.8 V, with a stored electron density of 4.2 x 10(12) cm(-2) in the gold nanoparticle layers, when the devices consist of three polyelectrolyte/gold nanoparticle layers. The reported approach offers new opportunities to prepare nanostructured polyelectrolyte/gold nanoparticle-based memory devices with tailored performance.