Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Journal of Quaternary Science, 7(38), p. 1184-1201, 2023

DOI: 10.1002/jqs.3528

Links

Tools

Export citation

Search in Google Scholar

Relative sea‐level changes in southeastern Australia during the 19<sup>th</sup> and 20<sup>th</sup> centuries

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

ABSTRACTRates of global and regional sea‐level rise between ~1850 and 1950 were high compared to those in preceding centuries. The cause of this sea‐level acceleration remains uncertain, but it appears to be pronounced in a small set of relative sea‐level proxy records from the Southern Hemisphere. Here we generate three new proxy‐based relative sea‐level reconstructions for southeastern Australia to investigate spatial patterns and causes of historical sea‐level changes in the Tasman Sea. Palaeo sea‐level estimates were determined using salt‐marsh foraminifera as sea‐level indicators. Records are underpinned by chronologies based on accelerator mass spectrometry 14C, radiogenic lead (210Pb), stable lead isotopes and palynological analyses. Our reconstructions show that relative sea level rose by ~0.2–0.3 m over the last 200 years in southeastern Australia, and rates of sea‐level rise were especially high over the first half of the 20th century. Based on modelled estimates of the contributing components to sea‐level rise, we suggest that the episode of rapid sea‐level rise was driven by barystatic contributions, but sterodynamic contributions were dominant by the mid‐20th century. Significant spatial variability in relative sea level indicates that local to sub‐regional drivers of sea level are also prominent. Our reconstructions significantly enhance our understanding of the spatiotemporal pattern of early 20th century sea‐level rise in the region.