Wiley Open Access, Ecology and Evolution, 6(13), 2023
DOI: 10.1002/ece3.10198
Full text: Download
AbstractUnderstanding population dynamics, movements, and fishing mortality is critical to establish effective shark conservation measures across international boundaries in the ocean. There are few survival and dispersal estimates of juveniles of oceanic shark species in the North Atlantic despite it being one of the most fished regions in the world. Here we provide estimates of dispersal, survival, and proportion of fishing mortality in the North Atlantic for two threatened oceanic sharks: the blue shark (Prionace glauca) and the shortfin mako shark (Isurus oxyrinchus). Our results are based on multi‐event models applied to tag‐recovery data of 700 blue sharks and 132 shortfin makos tagged over a decade. A total of 60 blue sharks (8.57% of tagged) and 30 makos (22.73%) were recovered by the longline fishery between 2009 and 2017. Tag‐reporting rate (percentage of returned information when a tagged shark was caught) was estimated to be high (0.794 ± 0.232 SE). Mean annual survival, as predicted from the models, was higher for blue shark (0.835 ± 0.040 SE) than for shortfin mako (0.618 ± 0.189 SE). Models predicted that fishing caused more than a half of total mortality in the study area for both species (0.576 ± 0.209), and more than a third of tagged individuals dispersed from the study area permanently (0.359 ± 0.073). Our findings, focused mainly on juveniles from oceanic areas, contribute to a better understanding of shark population dynamics in the North Atlantic and highlight the need for further conservation measures for both blue shark and shortfin mako, such as implementing efficient bycatch mitigation measures and static/dynamic time–area closures in the open ocean.