Published in

American Institute of Physics, Journal of Applied Physics, 1(135), 2024

DOI: 10.1063/5.0179267

Links

Tools

Export citation

Search in Google Scholar

Modulation of the optical and transport properties of epitaxial SrNbO3 thin films by defect engineering

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The discovery of strontium niobate (SNO) as a potentially new transparent electrode has generated much interest due to its implications in various optoelectronic devices. Pristine SNO exhibits exceptionally low resistivity (∼10−4 Ω cm) at room temperature. However, this low resistivity occurs due to large number of carrier concentration in the system, which significantly affects its optical transparency (∼40%) in the visible range and hinders its practical applications as a transparent electrode. Here, we show that modulating the growth kinetics via oxygen manipulation is a feasible approach to achieve the desired optoelectronic properties. In particular, epitaxial (001) SNO thin films are grown on (001) lanthanum aluminate by pulsed laser deposition at different oxygen partial pressures and are shown to improve the optical transparency from 40% to 72% (λ = 550 nm) at a marginal cost of electrical resistivity from 2.8 to 8.1 × 10−4 Ω cm. These changes are directly linked with the multi-valence Nb-states, as evidenced by x-ray photoelectron spectroscopy. Furthermore, the defect-engineered SNO films exhibit multiple electronic phases that include pure metallic, coexisting metal-semiconducting-like, and pure semiconducting-like phases as evidenced by low-temperature electrical transport measurements. The intriguing metal-semiconducting coexisting phase is thoroughly analyzed using both perpendicular and angle-dependent magnetoresistance measurements, further supported by a density functional theory-based first-principles study and the observed feature is explained by the quantum correction to the conductivity. Overall, this study shows an exciting avenue for altering the optical and transport properties of SNO epitaxial thin films for their practical use as a next-generation transparent electrode.