Published in

Optica, Optics Express, 22(31), p. 35777, 2023

DOI: 10.1364/oe.501063

Links

Tools

Export citation

Search in Google Scholar

Ultralow noise C + L wideband WDM-IMDD transmission at 18 × 112 Gbps by using hybrid second-order distributed Raman and first-order lumped Raman amplification

Journal article published in 2023 by Weiyu Zhang, Jiangbing Du ORCID, Mingming Tan ORCID, Zuyuan He
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We experimentally investigated and demonstrated an ultralow noise hybrid amplifier that combines second-order distributed Raman amplifier (DRA) and first-order lumped Raman amplifier (LRA) in a cascaded approach. This approach allows for the reutilization of pump light from the LRA as the seed light in the second-order DRA, and simultaneous full-band dispersion compensation is realized by using dispersion compensation fiber in the LRA. This approach also supports broadband gain flattening based on the separated DRA and LRA configuration. The transmission application of the proposed amplifier was investigated using a set of 10 external cavity lasers (ECLs) in the C-band and 8 ECLs in the L-band. Ranging from 1531.12 nm to 1595.49 nm across C + L band, the proposed hybrid amplifier gives a maximum on-off gain of 27.2 dB and an average gain of 23.4 dB, with an extremely low effective noise figure (NF) of lower than -2.9 dB. Intensity modulation direct detection (IMDD) signal transmission is carried out at two different data rates across these 18 wavelengths in the C + L band: (1) 56 Gbps/λ PAM-4 signal; (2) 112 Gbps/λ PAM-4 signal. The results show that the error free transmissions are demonstrated over 101.6 km EX2000 fiber using both signals with 7% HD-FEC and 20% SD-FEC, respectively.