Published in

MDPI, Crystals, 5(14), p. 459, 2024

DOI: 10.3390/cryst14050459

Links

Tools

Export citation

Search in Google Scholar

Structural and Optical Characterization of a New Tetra- and Hexa-Coordinated Cd-Based Hybrid Compound with White Light Emission

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The present paper deals with a new two-in-one zero-dimensional (0D) organic–inorganic hybrid compound namely (C6H10N2)4[CdBr6][CdBr4]2. This molecular crystal structure contains isolated CdBr4 tetrahedra and CdBr6 octahedra. The optical characterization by UV–Vis–NIR spectroscopy shows that the (C6H10N2)4[CdBr6][CdBr4]2 exhibits a large gap energy of 4.97 eV. Under UV excitation, this hybrid material shows a bright cold white light emission (WLE) at room temperature. The photoluminescence (PL) analysis suggests that the WLE originates from the organic molecules. Density of states (DOS) analysis using the density functional theory (DFT) demonstrates that the calculated HOMO(Br)→LUMO(organic) absorption transition (4.1 eV) does not have significant intensity, while, the transition involving the valence band (VB) and the second and third conduction bands (CB) around 5 eV are allowed, which is in good agreement with the experimental gap value. The interesting theoretical result is that the LUMO(organic)→HOMO(Br) emission is allowed, which confirms the important role of the organic molecule in the emission mechanism, in good agreement with the experimental PL analysis.