Dissemin is shutting down on January 1st, 2025

Published in

PeerJ, PeerJ, (11), p. e15677, 2023

DOI: 10.7717/peerj.15677

Links

Tools

Export citation

Search in Google Scholar

Comparison of the elastic recovery and strain-in-compression of commercial and novel vinyl polysiloxane impression materials incorporating a novel crosslinking agent and a surfactant

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

This study aims to formulate experimental vinylpolysiloxane (VPS) impression materials and compare their elastic recovery and strain-in-compressions with three commercial VPS materials (Aquasil, Elite, and Extrude). Five experimental materials (Exp), two hydrophobic (Exp-I and II) and three hydrophilic (Exp-III, IV and V) were developed. Exp 1 contained vinyl-terminated poly-dimethyl siloxane and a conventional cross-linking agent (poly methylhydrosiloxane), while Exp- II contained a novel cross-linking agent that is tetra-functional dimethyl-silyl-ortho-silicate (TFDMSOS). Exp III–V (hydrophilic materials) were formulated by incorporating different concentrations of non-ionic surfactant (Rhodasurf CET-2) into Exp II formulation. Measurement of elastic recovery and strain-in-compression for commercial and experimental materials were performed according to ISO4823 standard using the calibrated mechanical testing machine (Tinius Olsen). One-way analysis of variance (one-way ANOVA) and Tukey’s post-hoc (HSD) test were used for statistical analysis and a p-value of ≤ 0.05 was considered significant. Exp-I has statistically similar values to commercial VPS. The Exp-II showed the highest elastic recovery, while % elastic recovery was reduced with the addition of the non-ionic surfactant (Rhodasurf CET-2). The % reduction was directly related to the concentration of Rhodasurf CET-2. In addition, Exp II had significantly higher strain-in-compression values compared to Exp-I and commercial materials. These values were further increased with the addition of a non-ionic surfactant (Rhodasurf CET-2) was added (Exp-III, IV and V).