Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Small, 43(19), 2023

DOI: 10.1002/smll.202302380

Links

Tools

Export citation

Search in Google Scholar

Coherent Sub‐Nanometer Interface between Crystalline and Amorphous Materials Boosts Electrochemical Synthesis of Hydrogen Peroxide

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThere are enormous yet largely underexplored exotic phenomena and properties emerging from interfaces constructed by diverse types of components that may differ in composition, shape, or crystal structure. It remains poorly understood the unique properties a coherent interface between crystalline and amorphous materials may evoke, and there lacks a general strategy to fabricate such interfaces. It is demonstrated that by topotactic partial oxidation heterostructures composed of coherently registered crystalline and amorphous materials can be constructed. As a proof‐of‐concept study, heterostructures consisting of crystalline P3N5 and amorphous P3N5Ox can be synthesized by creating amorphous P3N5Ox from crystalline P3N5 without interrupting the covalent bonding across the coherent interface. The heterostructure is dictated by nanometer‐sized short‐range‐ordered P3N5 domains enclosed by amorphous P3N5Ox matrix, which entails simultaneously fast charge transfer across the interface and bicomponent synergistic effect in catalysis. Such a P3N5/P3N5Ox heterostructure attains an optimal adsorption energy for *OOH intermediates and exhibits superior electrocatalytic performance toward H2O2 production by adopting a selectivity of 96.68% at 0.4 VRHE and a production rate of 321.5 mmol h−1 gcatalyst−1 at −0.3 VRHE. The current study provides new insights into the synthetic strategy, chemical structure, and catalytic property of a sub‐nanometer coherent interface formed between crystalline and amorphous materials.