Full text: Download
Fluorescence-based detection techniques are part of an ever-expanding field and are widely used in biomedical and environmental research as a biosensing tool. These techniques have high sensitivity, selectivity, and a short response time, making them a valuable tool for developing bio-chemical assays. The endpoint of these assays is defined by changes in fluorescence signal, in terms of its intensity, lifetime, and/or shift in spectrum, which is monitored using readout devices such as microscopes, fluorometers, and cytometers. However, these devices are often bulky, expensive, and require supervision to operate, which makes them inaccessible in resource-limited settings. To address these issues, significant effort has been directed towards integrating fluorescence-based assays into miniature platforms based on papers, hydrogels, and microfluidic devices, and to couple these assays with portable readout devices like smartphones and wearable optical sensors, thereby enabling point-of-care detection of bio-chemical analytes. This review highlights some of the recently developed portable fluorescence-based assays by discussing the design of fluorescent sensor molecules, their sensing strategy, and the fabrication of point-of-care devices.