Dissemin is shutting down on January 1st, 2025

Published in

Wiley Open Access, Brain and Behavior, 9(13), 2023

DOI: 10.1002/brb3.3150

Links

Tools

Export citation

Search in Google Scholar

Impaired aldehyde detoxification exacerbates motor deficits in an alpha‐synuclein mouse model of Parkinson's disease

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractIntroductionThe discovery of biogenic aldehydes in the postmortem parkinsonian brain and the ability of these aldehydes to modify and cross‐link proteins has called attention to their possible role in Parkinson's disease. For example, many in vitro studies have found that the aldehyde metabolite of dopamine, 3,4‐dihydroxyphenylacetaldehyde (DOPAL), induces the formation of stable, neurotoxic alpha‐synuclein oligomers.MethodsTo study this in vivo, mice deficient in the two aldehyde dehydrogenase enzymes (Aldh1a1 and Aldh2, DKO) primarily responsible for detoxification of DOPAL in the nigrostriatal pathway were crossed with mice that overexpress human wild‐type alpha‐synuclein. DKO overexpressing human wild‐type alpha‐synuclein (DKO/ASO) offspring were evaluated for impairment on motor tasks associated with Parkinsonism.ResultsDKO/ASO mice developed severe motor deficits greater than that of mice overexpressing human wild‐type alpha‐synuclein alone.ConclusionThese results provide evidence to support the idea that biogenic aldehydes such as DOPAL interact with human wild‐type alpha‐synuclein, directly or indirectly, in vivo to exacerbate locomotor deficits in Parkinson's disease.