Published in

Wiley, Journal of Applied Polymer Science, 28(141), 2024

DOI: 10.1002/app.55624

Links

Tools

Export citation

Search in Google Scholar

Thermal aging of high‐performance fabrics used in the outer shell of firefighters' protective clothing

Journal article published in 2024 by M.-D. Saiful Hoque ORCID, Patricia I. Dolez ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractHigh‐performance fibers are known for their exceptional specific strength and resistance to various hazardous conditions, including fire. However, the long‐term performance of these fibers when exposed to convective heat has rarely been reported. This study investigated the accelerated thermal aging behavior of three high‐performance fabrics of different blends of inherently flame‐resistant high‐performance fibers: copolymer of aramids (Technora®)/polybenzoxazole (PBO); para‐aramid/meta‐aramid; and para‐aramid/polybenzimidazole (PBI). Fabric specimens were thermally aged for up to 1200 h at temperatures ranging from 90 to 320°C. While all three fabrics experienced losses in the breaking force, the Technora®/PBO fabric displayed the best strength retention, despite the complete disappearance of the Technora® fiber crystallinity after aging at 320°C for 1200 h. The para‐aramid/PBI blended fabric showed signs of competing aging processes at high temperatures. An increase in the fabrics' crystallinity and evidence of chain scission were observed after thermal aging. Additionally, degradation in the fabric's water‐repellent finish was observed. The findings of this study will contribute to the development of more durable and safer protective gear, particularly for high‐risk activities like firefighting.