Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 3(527), p. 5895-5915, 2023

DOI: 10.1093/mnras/stad3384

Links

Tools

Export citation

Search in Google Scholar

Galactic ‘Snake’ IRDC G11.11−0.12: a site of multiple hub–filament systems and colliding filamentary clouds

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT To probe star formation processes, we present a multiscale and multiwavelength investigation of the ‘Snake’ nebula/infrared dark cloud G11.11−0.12 (hereafter, G11; length ∼27 pc). Spitzer images hint at the presence of subfilaments (in absorption), and reveal four infrared-dark hub–filament system (HFS) candidates (extent < 6 pc) towards G11, where massive clumps (> 500 M⊙) and protostars are identified. The 13CO(2–1), C18O(2–1), and NH3(1,1) line data reveal a noticeable velocity oscillation towards G11, as well as its left part (or part-A) around Vlsr of 31.5 km s−1, and its right part (or part-B) around Vlsr of 29.5 km s−1. The common zone of these cloud components is investigated towards the centre of G11 housing one HFS. Each cloud component hosts two subfilaments. In comparison to part-A, more APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) clumps are observed towards part-B. The JWST near-infrared images discover one infrared-dark HFS candidate (extent ∼0.55 pc) around the massive protostar G11P1 (i.e. G11P1-HFS). Hence, the infrared observations reveal multiple infrared-dark HFS candidates at multiscale in G11. The Atacama Large Millimeter/submillimeter Array (ALMA) 1.16-mm continuum map shows multiple finger-like features (extent ∼3500–10 000 au) surrounding a dusty envelope-like feature (extent ∼18 000 au) towards the central hub of G11P1-HFS. Signatures of forming massive stars are found towards the centre of the envelope-like feature. The ALMA H13CO+ line data show two cloud components with a velocity separation of ∼2 km s−1 towards G11P1. Overall, the collision process, the ‘fray and fragment’ mechanism, and the ‘global non-isotropic collapse’ scenario seem to be operational in G11.