Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Macromolecular Bioscience, 2024

DOI: 10.1002/mabi.202400125

Links

Tools

Export citation

Search in Google Scholar

Nanostructured Biopolymer‐Based Constructs for Cartilage Regeneration: Fabrication Techniques and Perspectives

Journal article published in 2024 by Deepika Sharma ORCID, Bhabani K. Satapathy ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThe essential functions of cartilage, such as shock absorption and resilience, are hindered by its limited regenerative capacity. Although current therapies alleviate symptoms, novel strategies for cartilage regeneration are desperately needed. Recent developments in three‐dimensional (3D) constructs aim to address this challenge by mimicking the intrinsic characteristics of native cartilage using biocompatible materials, with a significant emphasis on both functionality and stability. Through fabrication methods such as 3D printing and electrospinning, researchers are making progress in cartilage regeneration; nevertheless, it is still very difficult to translate these advances into clinical practice. The review emphasizes the importance of integrating various fabrication techniques to create stable 3D constructs. Meticulous design and material selection are required to achieve seamless cartilage integration and durability. The review outlines the need to address these challenges and focuses on the latest developments in the production of hybrid 3D constructs based on biodegradable and biocompatible polymers. Furthermore, the review acknowledges the limitations of current research and provides perspectives on potential avenues for effectively regenerating cartilage defects in the future.