Dissemin is shutting down on January 1st, 2025

Published in

European Geosciences Union, The Cryosphere, 10(17), p. 4343-4362, 2023

DOI: 10.5194/tc-17-4343-2023

Links

Tools

Export citation

Search in Google Scholar

Measuring the spatiotemporal variability in snow depth in subarctic environments using UASs – Part 1: Measurements, processing, and accuracy assessment

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Snow conditions in the Northern Hemisphere are rapidly changing, and information on snow depth is critical for decision-making and other societal needs. Uncrewed or unmanned aircraft systems (UASs) can offer data resolutions of a few centimeters at a catchment-scale and thus provide a low-cost solution to bridge the gap between sparse manual probing and low-resolution satellite data. In this study, we present a series of snow depth measurements using different UAS platforms throughout the winter in the Finnish subarctic site Pallas, which has a heterogeneous landscape. We discuss the different platforms, the methods utilized, difficulties working in the harsh northern environment, and the UAS snow depth results compared to in situ measurements. Generally, all UASs produced spatially representative estimates of snow depth in open areas after reliable georeferencing by using the structure from motion (SfM) photogrammetry technique. However, significant differences were observed in the accuracies produced by the different UASs compared to manual snow depth measurements, with overall root mean square errors (RMSEs) varying between 13.0 and 25.2 cm, depending on the UAS. Additionally, a reduction in accuracy was observed when moving from an open mire area to forest-covered areas. We demonstrate the potential of low-cost UASs to efficiently map snow surface conditions, and we give some recommendations on UAS platform selection and operation in a harsh subarctic environment with variable canopy cover.