Published in

Nature Research, Communications Earth & Environment, 1(4), 2023

DOI: 10.1038/s43247-023-01129-1

Links

Tools

Export citation

Search in Google Scholar

A multi-sensor approach for increased measurements of floods and their societal impacts from space

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractMerging observations from multiple satellites is necessary to ensure that extreme hydrological events are consistently observed. Here, we evaluate the potential improvements to flood detectability afforded by combining data collected globally by Landsat, Sentinel-2, and Sentinel-1. The enhanced temporal sampling increased the number of floods with at least 1 useful image (≤20% clouds) from 7% for single sensors to up to 66% for a potential multi-sensor product. As dramatic as the increased coverage is, the socioeconomic impacts are even more tangible. In the pre-Sentinel era, only 22% of the total population displaced by flood events benefitted from having high-resolution images, whereas a potential multi-sensor product would serve 75% of the displaced population. Additionally, the merged dataset could observe up to 100% of floods caused by challenging drivers, e.g., tropical cyclones, tidal surges, including those rarely seen by single sensors, and thereby enable insights into governing mechanisms of these events.