Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 4(530), p. 3827-3854, 2024

DOI: 10.1093/mnras/stae962

Links

Tools

Export citation

Search in Google Scholar

Cloud-by-cloud multiphase investigation of the circumgalactic medium of low-redshift galaxies

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT The pervasive presence of warm gas in galaxy haloes suggests that the circumgalactic medium (CGM) is multiphase in its ionization structure and complex in its kinematics. Some recent state-of-the-art cosmological galaxy simulations predict an azimuthal dependence of CGM metallicities. We investigate the presence of such a trend by analysing the distribution of gas properties in the CGM around 47 z < 0.7 galaxies from the Multiphase Galaxy Halos Survey determined using a cloud-by-cloud, multiphase, ionization modelling approach. We identify three distinct populations of absorbers: cool clouds (T ∼ 104.1 K) in photoionization equilibrium, warm–hot collisionally ionized clouds (T ∼ 104.5–105 K) affected by time-dependent photoionization, and hotter clouds (T ∼ 105.4–106 K) with broad O vi and Ly α absorption consistent with collisional ionization. We find that fragmentation can play a role in the origin of cool clouds, that warm–hot clouds are out of equilibrium due to rapid cooling, and that hotter clouds are representative of virialized halo gas in all but the lowest mass galaxies. The metallicities of clouds do not depend on the azimuthal angle or other galaxy properties for any of these populations. At face value, this disagrees with the simplistic model of the CGM with bipolar outflows and cold-mode planar accretion. However, the number of clouds per sightline is significantly larger close to the minor and major axes. This implies that the processes of outflows and accretion are contributing to these CGM cloud populations, and our sightlines are probing gas of mixed origins at all azimuthal angles in these low-redshift galaxies.