Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 2024

DOI: 10.1093/mnras/stae1895

Links

Tools

Export citation

Search in Google Scholar

The ratio of [Eu/α] differentiates accreted/in-situ Milky Way stars across metallicities, as indicated by both field stars and globular clusters

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract We combine stellar orbits with the abundances of the heavy, r-process element europium and the light, α-element, silicon to separate in-situ and accreted populations in the Milky Way across all metallicities. At high orbital energy, the accretion-dominated halo shows elevated values of [Eu/Si], while at lower energies, where many of the stars were born in-situ, the levels of [Eu/Si] are lower. These systematically different levels of [Eu/Si] in the MW and the accreted halo imply that the scatter in [Eu/α] within a single galaxy is smaller than previously thought. At the lowest metallicities, we find that both accreted and in-situ populations trend down in [Eu/Si], consistent with enrichment via neutron star mergers. Through compiling a large dataset of abundances for 54 globular clusters (GCs), we show that differences in [Eu/Si] extend to populations of in-situ/accreted GCs. We interpret this consistency as evidence that in r-process elements GCs trace the star formation history of their hosts, motivating their use as sub-Gyr timers of galactic evolution. Furthermore, fitting the trends in [Eu/Si] using a simple galactic chemical evolution model, we find that differences in [Eu/Si] between accreted and in-situ MW field stars cannot be explained through star formation efficiency alone. Finally, we show that the use of [Eu/Si] as a chemical tag between GCs and their host galaxies extends beyond the Local Group, to the halo of M31 - potentially offering the opportunity to do Galactic Archaeology in an external galaxy.