Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Applied Sciences, 10(13), p. 6025, 2023

DOI: 10.3390/app13106025

Links

Tools

Export citation

Search in Google Scholar

Semantic Segmentation with High-Resolution Sentinel-1 SAR Data

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The world’s high-resolution images are supplied by a radar system named Synthetic Aperture Radar (SAR). Semantic SAR image segmentation proposes a computer-based solution to make segmentation tasks easier. When conducting scientific research, accessing freely available datasets and images with low noise levels is rare. However, SAR images can be accessed for free. We propose a novel process for labeling Sentinel-1 SAR radar images, which the European Space Agency (ESA) provides free of charge. This process involves denoising the images and using an automatically created dataset with pioneering deep neural networks to augment the results of the semantic segmentation task. In order to exhibit the power of our denoising process, we match the results of our newly created dataset with speckled noise and noise-free versions. Thus, we attained a mean intersection over union (mIoU) of 70.60% and overall pixel accuracy (PA) of 92.23 with the HRNet model. These deep learning segmentation methods were also assessed with the McNemar test. Our experiments on the newly created Sentinel-1 dataset establish that combining our pipeline with deep neural networks results in recognizable improvements in challenging semantic segmentation accuracy and mIoU values.