Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Polymers, 3(16), p. 339, 2024

DOI: 10.3390/polym16030339

Links

Tools

Export citation

Search in Google Scholar

Cation-Selective Actuator–Sensor Response of Microcrystalline Cellulose Multi-Walled Carbon Nanotubes of Different Electrolytes Using Propylene Carbonate Solvent

Journal article published in 2024 by Fred Elhi ORCID, Quoc Bao Le ORCID, Rudolf Kiefer ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Microcrystalline cellulose (MC) with 50 wt.% multi-walled carbon nanotube (MCNT) composites is obtained through extrusion, forming MC-MCNT fiber. In this study, we concentrate on three different electrolytes in propylene carbonate (PC) which have the same anions (TF−, trifluoro-methanesulfonate CF3SO3−) but different cations, EDMI+ (1-ethyl-2,3-dimethylimidazolium), Li+ (lithium ion), and TBA+ (tetrabutylammonium). Cyclic voltammetry and square wave potential steps, in combination with linear actuation measurements in a potential range of 0.7 V to −0.2 V, were conducted. Our goal in this work was to establish a cation-selective actuator–sensor device capable of distinguishing different cations. The linear actuation of MC-MCNT fiber had its main expansion at discharge due to the incorporation of TF− in the MC-MCNT fiber with the cations. In the following order, TBA+ > EDMI+ > Li+ had the best stress, strain, charge density, diffusion coefficients, and long-term stability. Chronopotentiometric measurements revealed that the cations in the PC solvent can be differentiated by their ion sizes. Further characterization of the MC-MCNT fiber was completed using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and FTIR and Raman spectroscopy.