Dissemin is shutting down on January 1st, 2025

Published in

European Geosciences Union, Atmospheric Measurement Techniques, 17(16), p. 4015-4030, 2023

DOI: 10.5194/amt-16-4015-2023

Links

Tools

Export citation

Search in Google Scholar

An extraction method for nitrogen isotope measurement of ammonium in a low-concentration environment

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Ammonia (NH3) participates in the nucleation and growth of aerosols and thus plays a major role in atmospheric transparency, pollution, health, and climate-related issues. Understanding its emission sources through nitrogen stable isotopes is therefore a major focus of current work to mitigate the adverse effects of aerosol formation. Since ice cores can preserve the past chemical composition of the atmosphere for centuries, they are a top tool of choice for understanding past NH3 emissions through ammonium (NH4+), the form of NH3 archived in ice. However, the remote or high-altitude sites where glaciers and ice sheets are typically localized have relatively low fluxes of atmospheric NH4+ deposition, which makes ice core samples very sensitive to laboratory NH3 contamination. As a result, accurate techniques for identifying and tracking NH3 emissions through concentration and isotopic measurements are highly sought to constrain uncertainties in NH3 emission inventories and atmospheric reactivity unknowns. Here, we describe a solid-phase extraction method for NH4+ samples of low concentration that limits external contamination and produces precise isotopic results. By limiting NH3atm exposure with a scavenging fume hood and concentrating the targeted NH4+ through ion exchange resin, we successfully achieve isotopic analysis of 50 nmol NH4+ samples with a 0.6 ‰ standard deviation. This extraction method is applied to an alpine glacier ice core from Col du Dôme, Mont Blanc, where we successfully demonstrate the analytical approach through the analysis of two replicate 8 m water equivalent ice cores representing 4 years of accumulation with a reproducibility of ±2.1 ‰. Applying this methodology to other ice cores in alpine and polar environments will open new opportunities for understanding past changes in NH3 emissions and atmospheric chemistry.