Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Foods, 13(12), p. 2447, 2023

DOI: 10.3390/foods12132447

Links

Tools

Export citation

Search in Google Scholar

Impact of Combined Thermal Pressure Treatments on Physical Properties and Stability of Whey Protein Gel Emulsions

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Emulsion gels are gaining interest as fat replacers due to their benefits associated with calorie reduction and their versatility in a wide range of products. Their production process needs to be tailored to obtain the desired stability and physicochemical properties. This study investigated the effect of heat (70, 80, and 90 °C) and pressure (5, 10, and 15 MPa) to produce whey protein emulsion gels using a pilot-scale tubular heat exchanger equipped with a homogenization valve. Both temperature and pressure determined a significant effect (p < 0.05) on the rheological moduli, with the treated samples displaying a predominant elastic behavior. The treatments also showed an improved pseudoplasticity due to the significant reduction in the flow behavior index (p < 0.05). All the samples showed a bimodal particle size distribution; by increasing the temperature up to 80 °C, a reduction in Dv50 (50th percentile) values compared to the control samples was observed. At 90 °C, the Dv50 value increased because of coalescence and flocculation phenomena occurring during or immediately after processing. The greater aggregation and structural development obtained with stronger process conditions improved the stability of the emulsions. The results show the capability to produce gel emulsions with good physical properties that could be proposed as food ingredients to substitute fats in food products.